حل عددی دستگاههای معادلات انتگرال فردهلم روی بازه های کراندار

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه
  • author احمد کاظملو شیخی
  • adviser حمید مسگرانی
  • Number of pages: First 15 pages
  • publication year 1389
abstract

یکی از شاخه های علم ریاضی که کاربرد فراوانی در مسائل مهندسی و فیزیک دارد معادلات انتگرال است. روشهای متعدی برای حل این معادلات وجود دارد, در این پایان نامه روش های عددی برای تقریب جواب دستگاهی از معادلات انتگرال فردهلم نوع دوم ارائه می کنیم. یک روش تصویری و یک روش نیستروم در فضاهای متفاوت مطرح می کنیم. نشان می دهیم چنین شیوه ای پایدار و همگراست اشاره می کنیم که دستگاههای معادلات خطی را که حل می کنیم خوش وضع هستند یعنی اعداد وضعیت ماتریس های ضرایب آنها بطور یکنواخت کراندار است به جز برای عامل لگاریتمی ممکن.در اینجا به خاطر سادگی دستگاهی را با دو معادله انتگرال در نظر گرفته اما مطالبی را که توضیح داده و اثبات می کنیم می توان کمابیش برای دستگاههایی با n معادله انتگرال فردهلم نوع دوم تعمیم داد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

full text

حل عددی معادلات انتگرال فردهلم نوع دوم روی بازه های بی کران

در این پایان نامه،برخی روش های عددی حل معادلات انتگرال فردهلم نوع دوم (روی بازه های بی کران- کران دار)بیان می نماییم . روش های پیشنهادی شامل روش های تصویری و نسخه های گسسته می باشند.این روش ها پایداو همگرا هستند. توجه ویژه ای به دستگاه خطی متناظر با معادله متناهی البعد شده است،که با حل این دستگاه خطی خوش وضع جواب تقریبی همگرا به جواب واقعی را بدست می آوریم. مثال های عددی را به منظور تایید صحت ر...

15 صفحه اول

حل معادلات انتگرال فردهلم با استفاده از توابع چندمقیاسی برنشتاین

در این مقاله، روش های عددی کارا برای پیدا کردن جواب معادلات انتگرال فردهلم خطی و غیرخطی نوع دوم بر اساس پایه توابع چند مقیاسی برنشتاین ارائه می شوند. در ابتدا، ویژگی های این توابع که به صورت ترکیب خطی از توابع بلاک پالس بر بازۀ (1، 0] و چندجمله ای های برنشتاین هستند به همراه  ماتریس عملیاتی دوگان آن ها ارائه می شوند. سپس از این ویژگی ها برای تبدیل معادلۀ انتگرال مورد نظر به معادله ای ماتریسی هم...

full text

روش محاسباتی برای حل معادلات انتگرال ولترا- فردهلم ترکیبی غیرخطی

در این مقاله، حل معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی، بااستفاده ازتوابع بلاک - پالس اصلاح شده سه بعدی(m3d-bfs) بررسی شده است. این روش معادلات انتگرال ولترا - فردهلم ترکیبی غیرخطی را به دستگاه معادلات غیرخطی جبری تبدیل می کند. شرح مثال ها گویای کارایی و سادگی روش ارایه شده می باشد.

full text

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023